These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Postnatal liver hemopoiesis in mice: generation of pre-B cells, granulocytes, and erythrocytes in discrete colonies.
    Author: Grossi CE, Velardi A, Cooper MD.
    Journal: J Immunol; 1985 Oct; 135(4):2303-11. PubMed ID: 3875650.
    Abstract:
    Morphologic analysis of hemopoietic tissue in mouse liver reveals the persistence of erythropoietic, granulopoietic, and lymphopoietic activity for approximately 2 wk after birth. Near the end of the first postnatal week, we noted a remarkable reorganization of the hemopoietic cells that was characterized by a transition from a diffuse distribution of mixed erythroid, myeloid, and lymphoid elements to a focal pattern of discrete hemopoietic colonies scattered among the cords of hepatic parenchymal cells. Each hemopoietic focus contained cells progressing along a single differentiation pathway (i.e., erythroid, myeloid, or lymphoid cells). Megakaryocytes were seen as solitary cells surrounded by hepatocytes. This pattern of colonization was observed in all strains of mice examined. In the livers of mice with known hemopoietic defects, however, differences were found in the duration of postnatal hemopoiesis. Accessory cells with macrophage-like features were consistently observed in erythropoietic foci, but were rarely seen in lymphoid foci. The latter were formed by pre-B cells identifiable by the presence of cytoplasmic mu-heavy chains and the absence of light chain expression. The occurrence of discrete colonies of erythroid, myeloid, and pre-B lymphoid cells in the postnatal liver suggests that each is derived from a single, committed precursor cell. This anatomical compartmentalization according to cell type offers a useful model system for analysis of hemopoietic differentiation and of the generation of clonal diversity among B lineage cells.
    [Abstract] [Full Text] [Related] [New Search]