These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Exogenous melatonin prolongs raspberry postharvest life quality by increasing some antioxidant and enzyme activity and phytochemical contents.
    Author: Rahmanzadeh-Ishkeh S, Shirzad H, Tofighi Z, Fattahi M, Ghosta Y.
    Journal: Sci Rep; 2024 May 20; 14(1):11508. PubMed ID: 38769439.
    Abstract:
    There is a growing trend towards enhancing the post-harvest shelf life and maintaining the nutritional quality of horticultural products using eco-friendly methods. Raspberries are valued for their diverse array of phenolic compounds, which are key contributors to their health-promoting properties. However, raspberries are prone to a relatively short post-harvest lifespan. The present study aimed to investigate the effect of exogenous melatonin (MEL; 0, 0.001, 0.01, and 0.1 mM) on decay control and shelf-life extension. The results demonstrated that MEL treatment significantly reduced the fruit decay rate (P ≤ 0.01). Based on the findings, MEL treatment significantly increased titratable acidity (TA), total phenolics content (TPC), total flavonoid content (TFC), and total anthocyanin content (TAC). Furthermore, the MEL-treated samples showed increased levels of rutin and quercetin content, as well as antioxidant activity as measured by 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric reduction activity potential (FRAP). Additionally, the samples exhibited higher levels of phenylalanine ammonia-lyase (PAL) and catalase (CAT) enzymes compared to the control samples. Moreover, the levels of pH, total soluble solids (TSS), and IC50 were decreased in the MEL-treated samples (P ≤ 0.01). The highest amount of TA (0.619 g/100 ml juice), rutin (16.722 µg/ml juice) and quercetin (1.467 µg/ml juice), and PAL activity (225.696 nm/g FW/min) was observed at 0.001 mM treatment, while, the highest amount of TAC (227.235 mg Cy-g/100 ml juice) at a concentration of 0.01 mM and CAT (0.696 u/g FW) and TAL activities (9.553 nm/100 g FW) at a concentration of 0.1 mM were obtained. Considering the lack of significant differences in the effects of melatonin concentrations and the low dose of 0.001 mM, this concentration is recommended for further research. The hierarchical cluster analysis (HCA) and principal component analysis (PCA) divided the treatments into three groups based on their characteristics. Based on the Pearson correlation between TPC, TFC, TAC, and TAA, a positive correlation was observed with antioxidant (DPPH and FRAP) and enzyme (PAL and CAT) activities. The results of this study have identified melatonin as an eco-friendly compound that enhances the shelf life of raspberry fruits by improving phenolic compounds, as well as antioxidant and enzyme activities.
    [Abstract] [Full Text] [Related] [New Search]