These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Screening Antibacterial Photodynamic Effect of Monascus Red Yeast Rice (Hong-Qu) and Mycelium Extracts. Author: Husakova M, Orlandi VT, Bolognese F, Branska B, Patakova P. Journal: Curr Microbiol; 2024 May 21; 81(7):183. PubMed ID: 38771359. Abstract: The fungus Monascus is a well-known source of secondary metabolites with interesting pharmaceutical and nutraceutical applications. In particular, Monascus pigments possess a wide range of biological activities (e.g. antimicrobial, antioxidant, anti-inflammatory or antitumoral). To broaden the scope of their possible application, this study focused on testing Monascus pigment extracts as potential photosensitizing agents efficient in antimicrobial photodynamic therapy (aPDT) against bacteria. For this purpose, eight different extracts of secondary metabolites from the liquid- and solid-state fermentation of Monascus purpureus DBM 4360 and Monascus sp. DBM 4361 were tested against Gram-positive and Gram-negative model bacteria, Bacillus subtilis and Escherichia coli and further screened for ESKAPE pathogens, Staphylococcus aureus and Pseudomonas aeruginosa. To the bacterial culture, increasing concentration of extracts was added and it was found that all extracts showed varying antimicrobial activity against Gram-positive bacteria in dark, which was further increased after irradiation. Gram-negative bacteria were tolerant to the extracts' exposure in the dark but sensitivity to almost all extracts that occurred after irradiation. The Monascus sp. DBM 4361 extracts seemed to be the best potential candidate for aPDT against Gram-positive bacteria, being efficient at low doses, i.e. the lowest total concentration of Monascus pigments exhibiting aPDT effect was 3.92 ± 1.36 mg/L for E. coli. Our results indicate that Monascus spp., forming monascuspiloin as the major yellow pigment and not-forming mycotoxin citrinin, is a promising source of antimicrobials and photoantimicrobials.[Abstract] [Full Text] [Related] [New Search]