These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Hsa_circ_0004872 mitigates proliferation, metastasis and immune escape of meningioma cells by suppressing PD-L1.
    Author: Chen K, Huang Z, Liu C, Ouyang Q, Yan Q, Zheng W, Huang Y.
    Journal: Metab Brain Dis; 2024 Jun; 39(5):895-907. PubMed ID: 38771413.
    Abstract:
    Meningioma is a prevalent intracranial malignancy known for its aggressive growth. Circular RNAs (circRNAs) play a crucial role in the development of various cancers. However, their involvement in meningioma remains understudied. This study aimed to investigate the function and underlying mechanism of hsa_circ_0004872 in meningioma. The molecular expression of hsa_circ_0004872, PD-L1 and EIF4A3 was identified by RT-qPCR and/or western blot assays. Cell viability, migration, and invasion were assessed through CCK-8 and Transwell assays, respectively. Cytotoxicity was determined using an LDH assay, and cell apoptosis was monitored by flow cytometry. The RNA and protein interactions were assessed through RNA-protein immunoprecipitation (RIP) and RNA pull down analyses. Our findings revealed that hsa_circ_0004872 expression was significantly downregulated in both meningioma tissue samples and cells. Overexpression of hsa_circ_0004872 inhibited the proliferation, metastasis, and immune escape of meningioma cells, as well as enhanced the cytotoxicity of CD8+ T cells by suppressing PD-L1. Furthermore, hsa_circ_0004872 directly interacted with EIF4A3, leading to the degradation of PD-L1 mRNA. Finally, inhibiting EIF4A3 improved the proliferation, metastasis, and immune escape of meningioma cells, as well as the cytotoxicity of CD8+ T cells. Our study demonstrated that hsa_circ_0004872 mitigated the proliferation, metastasis,and immune escape of meningioma cells by targeting the EIF4A3/PD-L1 axis. These findings suggested that hsa_circ_0004872 and EIF4A3 might serve as promising biological markers and therapeutic targets for meningioma treatment.
    [Abstract] [Full Text] [Related] [New Search]