These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Multimodal wearable EEG, EMG and accelerometry measurements improve the accuracy of tonic-clonic seizure detection. Author: Zhang J, Swinnen L, Chatzichristos C, Broux V, Proost R, Jansen K, Mahler B, Zabler N, Epitashvilli N, Dümpelmann M, Schulze-Bonhage A, Schriewer E, Ermis U, Wolking S, Linke F, Weber Y, Symmonds M, Sen A, Biondi A, Richardson MP, I AS, Silva AI, Sales F, Vértes G, Paesschen WV, Vos M. Journal: Physiol Meas; 2024 Jun 07; 45(6):. PubMed ID: 38772401. Abstract: Objective. This paper aims to investigate the possibility of detecting tonic-clonic seizures (TCSs) with behind-the-ear, two-channel wearable electroencephalography (EEG), and to evaluate its added value to non-EEG modalities in TCS detection.Methods. We included 27 participants with a total of 44 TCSs from the European multicenter study SeizeIT2. The wearable Sensor Dot (Byteflies) was used to measure behind-the-ear EEG, electromyography (EMG), electrocardiography, accelerometry (ACC) and gyroscope. We evaluated automatic unimodal detection of TCSs, using sensitivity, precision, false positive rate (FPR) and F1-score. Subsequently, we fused the different modalities and again assessed performance. Algorithm-labeled segments were then provided to two experts, who annotated true positive TCSs, and discarded false positives.Results. Wearable EEG outperformed the other single modalities with a sensitivity of 100% and a FPR of 10.3/24 h. The combination of wearable EEG and EMG proved most clinically useful, delivering a sensitivity of 97.7%, an FPR of 0.4/24 h, a precision of 43%, and an F1-score of 59.7%. The highest overall performance was achieved through the fusion of wearable EEG, EMG, and ACC, yielding a sensitivity of 90.9%, an FPR of 0.1/24 h, a precision of 75.5%, and an F1-score of 82.5%.Conclusions. In TCS detection with a wearable device, combining EEG with EMG, ACC or both resulted in a remarkable reduction of FPR, while retaining a high sensitivity.Significance. Adding wearable EEG could further improve TCS detection, relative to extracerebral-based systems.[Abstract] [Full Text] [Related] [New Search]