These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Regulation of hexokinase in cultured gliomas. Author: Graham JF, Cummins CJ, Smith BH, Kornblith PL. Journal: Neurosurgery; 1985 Oct; 17(4):537-42. PubMed ID: 3877250. Abstract: Positron emission computed tomographic (PECT) scanning studies have demonstrated that high grade gliomas exhibit increased 2-[18F]fluoro-2-deoxyglucose (18FDG) uptake compared to cerebral white matter and low grade gliomas. Hexokinase catalyzes the phosphorylation of glucose, as well as 18FDG and 2-deoxyglucose (2DG), thereby "trapping" these slowly metabolized analogues intracellularly. We hypothesize that a similar hexokinase-mediated uptake of glucose and glucose analogues occurs in vitro. Hexokinase activity was assayed in homogenates of tissue-cultured lines derived from high (IV) and low (II) grade gliomas and in fibroblasts derived from skin. With glucose as substrate, the maximal activity (Vmax) in the Grade IV lines was 200% of the activity found in the Grade II line, fibroblasts, and astrocytes; however, the Michaelis substrate affinity constant (Km) bore no relationship to tumor grade. With 2DG as substrate, the Vmax of all cell lines decreased, but the Grade IV lines still tended to have greater activity than the others. The Km values for 2DG were 5 times higher than those for glucose. Hexokinase is found in two subcellular compartments: an active form reversibly bound to mitochondria and a less active, cytosolic form. Up to 20% of the total hexokinase was found in the cytosol in all lines tested. High energy phosphate compounds (ATP, ADP, CTP, and others) displaced mitochondria-bound hexokinase, which increased the cytosolic form by 2-fold in the glioma lines, but fibroblast hexokinase distribution was unaffected. Our results suggest that: (a) high grade gliomas have increased hexokinase activity, which may explain the grade-related differences in 18FDG uptake observed by PECT scanning, and (b) human glioma hexokinases may be regulated by reversible subcellular compartmentation.[Abstract] [Full Text] [Related] [New Search]