These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Utilizing 3-dimensional models to assess keel bone damage in laying hens throughout the lay cycle.
    Author: Emmert BJ, Regmi P, Robison CI, Kim WK, Karcher DM.
    Journal: Poult Sci; 2024 Jul; 103(7):103804. PubMed ID: 38776860.
    Abstract:
    The global egg industry is rapidly transitioning to cage-free egg production from conventional cages. Hens housed in cage-free systems have an increased prevalence of keel damage that could lead to reduced egg production and compromised well-being. The objective of this study was to determine the effects of dietary supplementation of n-3 fatty acids and vitamin D3 on keel damage in hens housed in multi-tier aviary systems (AV). Brown hens were placed in 4 AV system rooms after rearing at 17 wk of age (woa) with each room containing 576 birds. At 12 woa, rooms were randomly assigned to a dietary treatment of flaxseed oil, fish oil, vitamin D3, or control. Focal birds (36 per treatment) were longitudinally examined for keel damage using quantitative computed tomography (QCT) at nine timepoints from 16 to 52 woa. Three-dimensional digital twins of the keels were created from the QCT scans and visually assessed for damage. An overall keel severity score was recorded as well as the location, direction, and severity of each deviation or fracture. Severity was ranked on a 0 to 5 scale with 0 being no damage and 5 being severe. Damage scores were analyzed utilizing odds ratios with main effects of age and treatment. At 16 woa, 80% of hens had overall keel scores of 0 and 20% had scores of 1. At 52 woa, all hens had damage, with 31% having a score of 1, 61% scored 2 to 3, and 8% scored 4 to 5. Most fractures were not observed until peak lay. Dietary treatments did not affect likelihood of fracture incidences, but younger birds had lower odds of incurring keel fractures than older birds (P < 0.0001). The initial incidences of keel deviations occurred earlier than fractures, with most birds obtaining a keel deviation by 28 woa. Keel damage was not able to be prevented, but the age at which keel fractures and deviations initiate appear to be different, with deviations occurring during growth and fractures during lay.
    [Abstract] [Full Text] [Related] [New Search]