These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Formation of serotonin by rat kidneys in vivo.
    Author: Stier CT, Itskovitz HD.
    Journal: Proc Soc Exp Biol Med; 1985 Dec; 180(3):550-7. PubMed ID: 3878522.
    Abstract:
    Renal formation of serotonin by decarboxylation of its amino acid precursor L-5-hydroxytryptophan (L-5-HTP) has been demonstrated with renal tissue homogenates and isolated perfused rat kidneys. Our objective in the present study was to determine whether the conversion of L-5-HTP to serotonin was associated with functional changes by kidneys in vivo. Renal clearance studies were conducted in anesthetized, volume-expanded male Sprague-Dawley rats receiving either saline (n = 9) or L-5-HTP (15 and 75 micrograms/min iv, n = 9). No change in mean arterial pressure was measured during infusions of L-5-HTP at either dose, whereas glomerular filtration rate (GFR), as measured by the clearance of inulin, and effective renal plasma flow (CPAH) decreased by 34 +/- 5% (mean +/- SE, P less than 0.001) and 26 +/- 7% (P greater than 0.07), respectively. Urine flow and sodium excretion decreased by 41 +/- 9% (P less than 0.01). Serotonin and 5-HTP were determined in urine and plasma using HPLC. High levels of 5-HTP were present in plasma, but not urine. Urinary serotonin increased in the rats receiving L-5-HTP without concomitant increases in plasma serotonin. More than 20% of the infused L-5-HTP was recovered in the urine as serotonin. The decarboxylase inhibitor carbidopa (20 micrograms/min) markedly reduced urinary serotonin excretion in the rats which received L-5-HTP and reversed the changes in GFR, CPAH, urine flow, and sodium excretion. Infusions of the amino acid precursor of L-5-HTP, L-tryptophan (n = 7), did not alter kidney function or increase plasma or urinary 5-HTP or serotonin levels. These results are consistent with the intrarenal formation of serotonin by renal decarboxylase with attendant alterations in renal hemodynamics and salt and water excretion.
    [Abstract] [Full Text] [Related] [New Search]