These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: 1H, 113Cd, and 31P NMR of osteocalcin (bovine gamma-carboxyglutamic acid containing protein). Author: Prigodich RV, O'Connor T, Coleman JE. Journal: Biochemistry; 1985 Oct 22; 24(22):6291-8. PubMed ID: 3878727. Abstract: The 1H (500-MHz), 113Cd (44-MHz), and 31P (81-MHz) NMR spectra of the bovine gamma-carboxyglutamate- (Gla-) containing protein osteocalcin and its Ca(II) and Cd(II) complexes in solution have been obtained. The 1H NMR spectrum of the native protein shows narrow resonances and a highly resolved multiplet structure suggesting rotational freedom of the side chains. In comparison to the simulated 1H NMR spectrum of a random polypeptide chain of the same amino acid composition, there is moderate chemical shift dispersion, indicating some conformational restraints to be present. Ca(II) binding broadens all 1H resonances, so severely at four Ca(II) ions per molecule that few structural conclusions can be made. Cd(II) substituted for Ca(II) has the same effect, and 113Cd NMR shows the Cd(II) to be in intermediate chemical exchange on the chemical shift time scale. Estimates of the chemical exchange rates required for 1H and 113Cd line broadening suggest a range of Kd values for the metal ion complexes from 10(-6) M to as high as 10(-3) M depending on the number of metal ions bound. Alternatively, 1H line broadening could be explained by relatively slow conformational fluxes in the protein induced by labile metal ion binding to one or more sites. Cd(II) when used to form a cadmium-phosphate mineral analogous to hydroxylapatite results in a crystal lattice that removes osteocalcin from solution just as effectively as hydroxylapatite. 113Cd(II) exchange at the binding sites of osteocalcin in solution is slowed dramatically by the addition of HPO4(2-). 31P NMR shows the interaction of phosphate with the protein to require the metal ion.(ABSTRACT TRUNCATED AT 250 WORDS)[Abstract] [Full Text] [Related] [New Search]