These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Total mercury, methylmercury, and their possible controlling factors in soils of typical coastal wetlands in China.
    Author: Li Z, Zhou C, Wang Y, He D, Liu M, Yin Y, Liu G, Wang X, Cai Y, Li Y.
    Journal: J Hazard Mater; 2024 Jul 15; 473():134711. PubMed ID: 38795491.
    Abstract:
    Coastal wetland soils play a critical role in the global mercury (Hg) cycle, serving as both an important repository for total mercury (THg) and a hotspot for methylmercury (MeHg) production. This study investigated Hg pollution in soils dominated by Phragmites australis (PA) and Spartina alterniflora (SA) across five representative China's coastal wetlands (Yellow River (YR), Linhong River (LHR), Yangtze River (CJR), Min River (MR), and Nanliu River (NLR)). The THg concentrations ranged from 16.7 to 446.0 (96.3 ± 59.3 ng g-1, dw), while MeHg concentrations varied from 0.01 to 0.81 (0.12 ± 0.12 ng g-1, dw). We further evaluated Hg risk in these wetlands using potential ecological risk index (Er) and geographical enrichment factor (Igeo). Most wetlands exhibited low to moderate ecological risk, except the PA habitat in the YR wetland, showing moderate to high risk. Soil organic matter significantly influenced THg and MeHg distribution, while MeHg% correlated well with soil salinity and pH. These findings highlight the importance of organic-rich coastal wetland soils in THg and MeHg accumulation, with the soil properties influencing net MeHg production. Furthermore, SA habitat generally exhibited higher MeHg%, suggesting its invasion elevates the ecological risk of MeHg in coastal wetlands. ENVIRONMENTAL IMPLICATION: Mercury (Hg), a global pollutant, poses great risks to wildlife and humans. Since industrialization, anthropogenic Hg release surpassed natural sources. Long-term exposure leads to biomagnification of Hg. This study assessed Hg and methylmercury pollution and risks in soils of five China's coastal wetlands dominated by Phragmites australis and Spartina alterniflora. Environmental factors (total carbon, total organic carbon, total nitrogen, salinity, pH) were analyzed to reveal key variables influencing Hg pollution and methylation. Essential for quantifying Hg pollution in coastal wetlands, the findings provide a scientific basis for effective wetland conservation policies and addressing environmental health in these regions.
    [Abstract] [Full Text] [Related] [New Search]