These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The halotolerant exopolysaccharide-producing Rhizobium azibense increases the salt tolerance mechanism in Phaseolus vulgaris (L.) by improving growth, ion homeostasis, and antioxidant defensive enzymes.
    Author: Shahid M, Altaf M, Danish M.
    Journal: Chemosphere; 2024 Jul; 360():142431. PubMed ID: 38797209.
    Abstract:
    Globally, agricultural productivity is facing a serious problem due to soil salinity which often causes osmotic, ionic, and redox imbalances in plants. Applying halotolerant rhizobacterial inoculants having multifarious growth-regulating traits is thought to be an effective and advantageous approach to overcome salinity stress. Here, salt-tolerant (tolerating 300 mM NaCl), exopolysaccharide (EPS) producing Rhizobium azibense SR-26 (accession no. MG063740) was assessed for salt alleviation potential by inoculating Phaseolus vulgaris (L.) plants raised under varying NaCl regimes. The metabolically active cells of strain SR-26 produced a significant amount of phytohormones (indole-3-acetic acid, gibberellic acid, and cytokinin), ACC deaminase, ammonia, and siderophore under salt stress. Increasing NaCl concentration variably affected the EPS produced by SR-26. The P-solubilization activity of the SR-26 strain was positively impacted by NaCl, as demonstrated by OD shift in NaCl-treated/untreated NBRIP medium. The detrimental effect of NaCl on plants was lowered by inoculation of halotolerant strain SR-26. Following soil inoculation, R. azibense significantly (p ≤ 0.05) enhanced seed germination (10%), root (19%) shoot (23%) biomass, leaf area (18%), total chlorophyll (21%), and carotenoid content (32%) of P. vulgaris raised in soil added with 40 mM NaCl concentration. Furthermore, strain SR-26 modulated the relative leaf water content (RLWC), proline, total soluble protein (TSP), and sugar (TSS) of salt-exposed plants. Moreover, R. azibense inoculation lowered the concentrations of oxidative stress biomarkers; MDA (29%), H2O2 content (24%), electrolyte leakage (31%), membrane stability (36%) and Na+ ion uptake (28%) when applied to 40 mM NaCl-treated plants. Further, R. azibense increases the salt tolerance mechanism of P. vulgaris by upregulating the antioxidant defensive responses. Summarily, it is reasonable to propose that EPS-synthesizing halotolerant R. azibense SR-26 should be applied as the most cost-effective option for increasing the yields of legume crops specifically P. vulgaris in salinity-challenged soil systems.
    [Abstract] [Full Text] [Related] [New Search]