These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Field-Free Spin-Orbit Torque Magnetization Switching in a Single-Phase Ferromagnetic and Spin Hall Oxide. Author: Jo Y, Kim Y, Kim S, Ryoo E, Noh G, Han GJ, Lee JH, Cho WJ, Lee GH, Choi SY, Lee D. Journal: Nano Lett; 2024 Jun 12; 24(23):7100-7107. PubMed ID: 38810235. Abstract: Current-induced spin-orbit torque (SOT) offers substantial promise for the development of low-power, nonvolatile magnetic memory. Recently, a single-phase material concurrently exhibiting magnetism and the spin Hall effect has emerged as a scientifically and technologically interesting platform for realizing efficient and compact SOT systems. Here, we demonstrate external-magnetic-field-free switching of perpendicular magnetization in a single-phase ferromagnetic and spin Hall oxide SrRuO3. We delicately altered the local lattices of the top and bottom surface layers of SrRuO3, while retaining a quasi-homogeneous, single-crystalline nature of the SrRuO3 bulk. This leads to unbalanced spin Hall effects between the top and bottom layers, enabling net SOT performance within single-layer ferromagnetic SrRuO3. Notably, our SrRuO3 exhibits the highest SOT efficiency and lowest power consumption among all known single-layer systems under field-free conditions. Our method of artificially manipulating the local atomic structures will pave the way for advances in spin-orbitronics and the exploration of new SOT materials.[Abstract] [Full Text] [Related] [New Search]