These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Heterologous repressor-operator recognition among four classes of tetracycline resistance determinants.
    Author: Klock G, Unger B, Gatz C, Hillen W, Altenbuchner J, Schmid K, Schmitt R.
    Journal: J Bacteriol; 1985 Jan; 161(1):326-32. PubMed ID: 3881391.
    Abstract:
    Homologous and heterologous repressor-operator interactions among four different classes of tetracycline resistance determinants have been compared. These are represented by RP1/Tn1721 (class A), R222/Tn10 (class B), pSC101/pBR322 (class C), and RA1 (class D). By the use of the purified repressor proteins of class A (TetRA) and class B (TetRB), operator sequences of all four classes are recognized by both with an identical stoichiometry of four repressor subunits per control sequence, but with different affinities. In vitro transcription has been used to demonstrate regulatory activities of TetRA and TetRB upon all four classes of tet genes. Tetracycline acted as an inducer. A functional relationship among the tet regulatory systems was also shown in vivo by complementation of a class A tetR'-galK fusion mutant with the tetR genes of classes A, B, and C. Repression of tetRA-linked galactokinase was ca. 80% in the presence of tetRA or tetRC, and ca. 50% in the presence of tetRB. Taken together, these results demonstrate heterologous repressor-operator interaction, suggesting close relationships among the four classes of Tcr determinants.
    [Abstract] [Full Text] [Related] [New Search]