These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Fostering Charge Carrier Transport and Absorber Growth Properties in CZTSSe Thin Films with an ALD-SnO2 Capping Layer.
    Author: Gour KS, Pawar PS, Lee M, Karade VC, Yun JS, Heo J, Park J, Yun JH, Kim JH.
    Journal: ACS Appl Mater Interfaces; 2024 Jun 12; 16(23):30010-30019. PubMed ID: 38814930.
    Abstract:
    The present study demonstrates that precursor passivation is an effective approach for improving the crystallization process and controlling the detrimental defect density in high-efficiency Cu2ZnSn(S,Se)4 (CZTSSe) thin films. It is achieved by applying the atomic layer deposition (ALD) of the tin oxide (ALD-SnO2) capping layer onto the precursor (Cu-Zn-Sn) thin films. The ALD-SnO2 capping layer was observed to facilitate the homogeneous growth of crystalline grains and mitigate defects prior to sulfo-selenization in CZTSSe thin films. Particularly, the CuZn and SnZn defects and deep defects associated with Sn were effectively mitigated due to the reduction of Sn2+ and the increase in Sn4+ levels in the kesterite CZTSSe film after introducing ALD-SnO2 on the precursor films. Subsequently, devices integrating the ALD-SnO2 layer exhibited significantly reduced recombination and efficient charge transport at the heterojunction interface and within the bulk CZTSSe absorber bulk properties. Finally, the CZTSSe device showed improved power conversion efficiency (PCE) from 8.46% to 10.1%. The incorporation of ALD-SnO2 revealed reduced defect sites, grain boundaries, and surface roughness, improving the performance. This study offers a systematic examination of the correlation between the incorporation of the ALD-SnO2 layer and the improved PCE of CZTSSe thin film solar cells (TFSCs), in addition to innovative approaches for improving absorber quality and defect control to advance the performance of kesterite CZTSSe devices.
    [Abstract] [Full Text] [Related] [New Search]