These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Exercise following joint distraction inhibits muscle wasting and delays the progression of post-traumatic osteoarthritis in rabbits by activating PGC-1α in skeletal muscle.
    Author: Liu X, Chen R, Song Z, Sun Z.
    Journal: J Orthop Surg Res; 2024 May 31; 19(1):325. PubMed ID: 38822418.
    Abstract:
    OBJECTIVE: Muscle wasting frequently occurs following joint trauma. Previous research has demonstrated that joint distraction in combination with treadmill exercise (TRE) can mitigate intra-articular inflammation and cartilage damage, consequently delaying the advancement of post-traumatic osteoarthritis (PTOA). However, the precise mechanism underlying this phenomenon remains unclear. Hence, the purpose of this study was to examine whether the mechanism by which TRE following joint distraction delays the progression of PTOA involves the activation of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), as well as its impact on muscle wasting. METHODS: Quadriceps samples were collected from patients with osteoarthritis (OA) and normal patients with distal femoral fractures, and the expression of PGC-1α was measured. The hinged external fixator was implanted in the rabbit PTOA model. One week after surgery, a PGC-1α agonist or inhibitor was administered for 4 weeks prior to TRE. Western blot analysis was performed to detect the expression of PGC-1α and Muscle atrophy gene 1 (Atrogin-1). We employed the enzyme-linked immunosorbent assay (ELISA) technique to examine pro-inflammatory factors. Additionally, we utilized quantitative real-time polymerase chain reaction (qRT-PCR) to analyze genes associated with cartilage regeneration. Synovial inflammation and cartilage damage were evaluated through hematoxylin-eosin staining. Furthermore, we employed Masson's trichrome staining and Alcian blue staining to analyze cartilage damage. RESULTS: The decreased expression of PGC-1α in skeletal muscle in patients with OA is correlated with the severity of OA. In the rabbit PTOA model, TRE following joint distraction inhibited the expressions of muscle wasting genes, including Atrogin-1 and muscle ring finger 1 (MuRF1), as well as inflammatory factors such as interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) in skeletal muscle, potentially through the activation of PGC-1α. Concurrently, the production of IL-1β, IL-6, TNF-α, nitric oxide (NO), and malondialdehyde (MDA) in the synovial fluid was down-regulated, while the expression of type II collagen (Col2a1), Aggrecan (AGN), SRY-box 9 (SOX9) in the cartilage, and superoxide dismutase (SOD) in the synovial fluid was up-regulated. Additionally, histological staining results demonstrated that TRE after joint distraction reduced cartilage degeneration, leading to a significant decrease in OARSI scores.TRE following joint distraction could activate PGC-1α, inhibit Atrogin-1 expression in skeletal muscle, and reduce C-telopeptides of type II collagen (CTX-II) in the blood compared to joint distraction alone. CONCLUSION: Following joint distraction, TRE might promote the activation of PGC-1α in skeletal muscle during PTOA progression to exert anti-inflammatory effects in skeletal muscle and joint cavity, thereby inhibiting muscle wasting and promoting cartilage regeneration, making it a potential therapeutic intervention for treating PTOA.
    [Abstract] [Full Text] [Related] [New Search]