These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Triblock polyadenine-based electrochemical aptasensor for ultra-sensitive detection of carcinoembryonic antigen via exonuclease III-assisted target recycling and hybridization chain reaction. Author: Huang S, Wang Y, Liu S, Li H, Yang M, Fang Y, Xiao Q. Journal: Bioelectrochemistry; 2024 Oct; 159():108749. PubMed ID: 38823375. Abstract: Carcinoembryonic antigen (CEA), a key colon biomarker, demands a precise detection method for cancer diagnosis and prognosis. This study introduces a novel electrochemical aptasensor using a triblock polyadenine probe for ultra-sensitive detection of CEA. The method leverages Exonuclease III (Exo III)-assisted target recycling and hybridization chain reaction. The triblock polyadenine probe self-assembles on the bare gold electrode through the strong affinity between adenine and gold electrode, blocking CEA diffusion and providing a large immobilization surface. CEA binding to hairpin probe 1 (HP1), followed by the hybridization between HP1 and hairpin probe 2 (HP2), triggers DNA cleavage by Exo III, amplifying the signal via a hybridization chain reaction and producing numerous dsDNA walkers that generates a dramatic electrochemical impedance signal. Under optimized conditions, the aptasensor achieved two ultra-low detection limits: 0.39 ag∙mL-1 within the concentration range of 5 ag∙mL-1 to 5 × 106 ag∙mL-1, and 1.5 ag∙mL-1 within the concentration range of 5 × 106 ag∙mL-1 to 1 × 1010 ag∙mL-1. Its performance in human serum samples meets the practical standards, offering a promising new tool for ultrasensitive tumor marker detection, potentially revolutionizing early cancer diagnosis.[Abstract] [Full Text] [Related] [New Search]