These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Evidence for the involvement of vicinal sulfhydryl groups in insulin-activated hexose transport by 3T3-L1 adipocytes. Author: Frost SC, Lane MD. Journal: J Biol Chem; 1985 Mar 10; 260(5):2646-52. PubMed ID: 3882699. Abstract: Following the differentiation of 3T3-L1 preadipocytes insulin acutely activates the rate of 2-deoxy-[1-14C]glucose uptake in the mature 3T3-L1 adipocyte by 15- to 20-fold. Phenylarsine oxide, a trivalent arsenical that forms stable ring complexes with vicinal dithiols, prevents insulin-activated hexose uptake in a concentration-dependent manner (Ki = 7 microM) but has no inhibitory effect on basal hexose uptake. 2,3-Dimercaptopropanol at a level nearly stoichiometric to that of phenylarsine oxide prevents or rapidly reverses the inhibition of hexose uptake; 2-mercaptoethanol, even in high stoichiometric excess over the arsenical, does not reverse inhibition of hexose uptake. When phenylarsine oxide is added after adipocytes have been fully activated by insulin, 2-deoxy-[1-14C]glucose uptake rate decays slowly at a rate corresponding to that caused by the withdrawal of insulin (t1/2 = 10 min). Using the same conditions under which phenylarsine oxide blocked activation, the Km for deoxyglucose uptake, the rate at which 125I-insulin became cell-associated, and the 125I-insulin binding isotherm for solubilized insulin receptor were not affected by phenylarsine oxide. These results support the transporter translocation model for insulin-activated hexose transport and implicate vicinal sulfhydryl groups in a post-insulin binding event essential for the translocation of glucose transporters to the plasma membrane.[Abstract] [Full Text] [Related] [New Search]