These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Graphitized Carbon-Supported Co@Co3O4 for Ozone Decomposition over the Entire Humidity Range. Author: Ma J, Guo W, Ni C, Chen X, Li W, Zheng J, Chen W, Luo Z, Wang J, Guo Y. Journal: Environ Sci Technol; 2024 Jul 09; 58(27):12189-12200. PubMed ID: 38838084. Abstract: Ground-level ozone (O3) pollution has emerged as a significant concern due to its detrimental effects on human health and the ecosystem. Catalytic removal of O3 has proven to be the most efficient and cost-effective method. However, its practical application faces substantial challenges, particularly in relation to its effectiveness across the entire humidity range. Herein, we proposed a novel strategy termed "dual active sites" by employing graphitized carbon-loaded core-shell cobalt catalysts (Co@Co3O4-C). Co@Co3O4-C was synthesized via the pyrolysis of a Co-organic ligand as the precursor. By utilizing this approach, we achieved a nearly constant 100% working efficiency of the Co@Co3O4-C catalyst for catalyzing O3 decomposition across the entire humidity range. Physicochemical characterization coupled with density functional theory calculations elucidates that the presence of encapsulated metallic Co nanoparticles enhances the reactivity of the cobalt oxide capping layer. Additionally, the interface carbon atom, strongly influenced by adjacent metallic Co nuclei, functions as a secondary active site for the decomposition of O3 decomposition. The utilization of dual active sites effectively mitigates the competitive adsorption of H2O molecules, thus isolating them for adsorption in the cobalt oxide capping layer. This optimized configuration allows for the decomposition of O3 without interference from moisture. Furthermore, O3 decomposition monolithic catalysts were synthesized using a material extrusion-based three-dimensional (3D) printing technology, which demonstrated a low pressure drop and exceptional mechanical strength. This work provides a "dual active site" strategy for the O3 decomposition reaction, realizing O3 catalytic decomposition over the entire humidity range.[Abstract] [Full Text] [Related] [New Search]