These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Synthesis, Characterization, and Fabrication of Nickel Metal-Organic Framework-Incorporated Polymer Electrolyte Membranes for Fuel-Cell Applications. Author: Mahalingam A, Pushparaj H. Journal: ACS Appl Mater Interfaces; 2024 Jun 19; 16(24):31145-31157. PubMed ID: 38842949. Abstract: Proton-conducting sulfonated polymer metal-organic framework (MOF)-based composite membranes were synthesized by anchoring the nickel MOF (Ni-MOF) to the aromatic sulfonated polymer backbone. In this work, we sulfonated two different polymers, poly(1,4-phenylene ether ether sulfone) (PEES) and poly ether ether ketone (PEEK), with a controllable sulfonation degree, and the synthesized Ni-MOF was incorporated into the sulfonated polymers to prepare a polymer electrolyte membrane. The effect of an MOF as a pendant moiety on the polymer backbone had a significant effect on properties such as water uptake, thermal, mechanical, and oxidative stabilities, swelling ratio, ion-exchange capacity (IEC), morphology, proton conductivity, and fuel-cell performance. The presence of an MOF structure enhanced the water retention capacity of the composite membranes. Adding Ni-MOF to the composite membrane improved the fuel-cell performance by increasing the OCV and power density. Among the synthesized electrolytes, the 3 wt % Ni-MOF-incorporated sPEEK membrane displayed a power density of 319 mW/cm2 with a cell voltage of 0.79 V, which was higher than the pure sulfonated polymer. Thus, the developed composite membranes are suitable for fuel-cell applications.[Abstract] [Full Text] [Related] [New Search]