These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Ultrafast high-endurance memory based on sliding ferroelectrics. Author: Yasuda K, Zalys-Geller E, Wang X, Bennett D, Cheema SS, Watanabe K, Taniguchi T, Kaxiras E, Jarillo-Herrero P, Ashoori R. Journal: Science; 2024 Jul 05; 385(6704):53-56. PubMed ID: 38843354. Abstract: The persistence of voltage-switchable collective electronic phenomena down to the atomic scale has extensive implications for area- and energy-efficient electronics, especially in emerging nonvolatile memory technology. We investigate the performance of a ferroelectric field-effect transistor (FeFET) based on sliding ferroelectricity in bilayer boron nitride at room temperature. Sliding ferroelectricity represents a different form of atomically thin two-dimensional (2D) ferroelectrics, characterized by the switching of out-of-plane polarization through interlayer sliding motion. We examined the FeFET device employing monolayer graphene as the channel layer, which demonstrated ultrafast switching speeds on the nanosecond scale and high endurance exceeding 1011 switching cycles, comparable to state-of-the-art FeFET devices. These characteristics highlight the potential of 2D sliding ferroelectrics for inspiring next-generation nonvolatile memory technology.[Abstract] [Full Text] [Related] [New Search]