These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effect of hydrogen peroxide on lens transparency, intracellular pH, gap junction coupling, hydrostatic pressure and membrane water permeability. Author: Varadaraj K, Gao J, Mathias RT, Kumari S. Journal: Exp Eye Res; 2024 Aug; 245():109957. PubMed ID: 38843983. Abstract: Clouding of the eye lens or cataract is an age-related anomaly that affects middle-aged humans. Exploration of the etiology points to a great extent to oxidative stress due to different forms of reactive oxygen species/metabolites such as Hydrogen peroxide (H2O2) that are generated due to intracellular metabolism and environmental factors like radiation. If accumulated and left unchecked, the imbalance between the production and degradation of H2O2 in the lens could lead to cataracts. Our objective was to explore ex vivo the effects of H2O2 on lens physiology. We investigated transparency, intracellular pH (pHi), intercellular gap junction coupling (GJC), hydrostatic pressure (HP) and membrane water permeability after subjecting two-month-old C57 wild-type (WT) mouse lenses for 3 h or 8 h in lens saline containing 50 μM H2O2; the results were compared with control lenses incubated in the saline without H2O2. There was a significant decrease in lens transparency in H2O2-treated lenses. In control lenses, pHi decreases from ∼7.34 in the surface fiber cells to 6.64 in the center. Experimental lenses exposed to H2O2 for 8 h showed a significant decrease in surface pH (from 7.34 to 6.86) and central pH (from 6.64 to 6.56), compared to the controls. There was a significant increase in GJC resistance in the differentiating (12-fold) and mature (1.4-fold) fiber cells compared to the control. Experimental lenses also showed a significant increase in HP which was ∼2-fold higher at the junction between the differentiating and mature fiber cells and ∼1.5-fold higher at the center compared to these locations in control lenses; HP at the surface was 0 mm Hg in either type lens. Fiber cell membrane water permeability significantly increased in H2O2-exposed lenses compared to controls. Our data demonstrate that elevated levels of lens intracellular H2O2 caused a decrease in intracellular pH and led to acidosis which most likely uncoupled GJs, and increased AQP0-dependent membrane water permeability causing a consequent rise in HP. We infer that an abnormal increase in intracellular H2O2 could induce acidosis, cause oxidative stress, alter lens microcirculation, and lead to the development of accelerated lens opacity and age-related cataracts.[Abstract] [Full Text] [Related] [New Search]