These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Lipocalin-2-mediated intestinal epithelial cells pyroptosis via NF-κB/NLRP3/GSDMD signaling axis adversely affects inflammation in colitis.
    Author: Yang Y, Li S, Liu K, Zhang Y, Zhu F, Ben T, Chen Z, Zhi F.
    Journal: Biochim Biophys Acta Mol Basis Dis; 2024 Oct; 1870(7):167279. PubMed ID: 38844113.
    Abstract:
    Ulcerative colitis (UC) is a major inflammatory bowel disease (IBD) characterized by intestinal epithelium damage. Recently, Lipocalin-2 (LCN2) has been identified as a potential fecal biomarker for patients with UC. However, further investigation is required to explore its pro-inflammatory role in UC and the underlying mechanism. The biological analysis revealed that Lcn2 serves as a putative signature gene in the colon mucosa of patients with UC and its association with the capsase/pyroptosis signaling pathway in UC. In wild-type mice with DSS-induced colitis, LCN2 overexpression in colon mucosa via in vivo administration of Lcn2 overexpression plasmid resulted in exacerbation of colitis symptoms and epithelium damage, as well as increased expression levels of pyroptosis markers (cleaved caspase1, GSDMD, IL-1β, HMGB1 and IL-18). Additionally, we observed downregulation in the expression levels of pyroptosis markers following in vivo silencing of LCN2. However, the pro-inflammatory effect of LCN2 overexpression was effectively restrained in GSDMD-KO mice. Moreover, single-cell RNA-sequencing analysis revealed that Lcn2 was predominantly expressed in the intestinal epithelial cells (IECs) within the colon mucosa of patients with UC. We found that LCN2 effectively regulated pyroptosis events by modulating the NF-κB/NLRP3/GSDMD signaling axis in NCM460 cells stimulated by LPS and ATP. These findings demonstrate the pro-inflammatory role of LCN2 in colon epithelium and provide a potential target for inhibiting pyroptosis in UC.
    [Abstract] [Full Text] [Related] [New Search]