These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Tanshinone IIA Liposomes Treat Doxorubicin-Induced Glomerulonephritis by Modulating the Microenvironment of Fibrotic Kidneys.
    Author: Dong T, Yang N, Qin J, Zhao C, Gao T, Ma H, Zhu C, Xu H.
    Journal: Mol Pharm; 2024 Jul 01; 21(7):3281-3295. PubMed ID: 38848439.
    Abstract:
    Renal fibrosis plays a key role in the pathogenesis of chronic kidney disease (CKD), in which the persistent high expression of transforming growth factor β1 (TGF-β1) and α-smooth muscle actin (α-SMA) contributes to the progression of CKD to renal failure. In order to improve the solubility, bioavailability, and targeting of tanshinone IIA (Tan IIA), a novel targeting material, aminoethyl anisamide-polyethylene glycol-1,2-distearoyl-sn-glycero-3-phosphate ethanolamine (AEAA-PEG-DSPE, APD) modified Tan IIA liposomes (APD-Tan IIA-L) was constructed. An animal model of glomerulonephritis induced by doxorubicin in BALB/c mice was established. APD-Tan IIA-L significantly decreased blood urea nitrogen and serum creatinine (SCr), and the consequences of renal tissue oxidative stress indicators showed that APD-Tan IIA-L downregulated malondialdehyde, upregulated superoxide dismutase, catalase, and glutathione peroxidase. Masson's trichrome staining showed that the deposition of collagen in the APD-Tan IIA-L group decreased significantly. The pro-fibrotic factors (fibronectin, collagen I, TGF-β1, and α-SMA) and epithelial-mesenchymal transition marker (N-cadherin) were significantly inhibited by APD-Tan IIA-L. By improving the microenvironment of fibrotic kidneys, APD-Tan IIA-L attenuated TGF-β1-induced excessive proliferation of fibroblasts and alleviated oxidative stress damage to the kidney, providing a new strategy for the clinical treatment of renal fibrosis.
    [Abstract] [Full Text] [Related] [New Search]