These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The Participation of Ferroptosis in Fibrosis of the Heart and Kidney Tissues in Dahl Salt-Sensitive Hypertensive Rats.
    Author: Huang YQ, Peng K, Yan J, Chen HL, Jiang PY, Du YF, Ling X, Zhang SL, Wu J.
    Journal: Am J Hypertens; 2024 Sep 16; 37(10):784-791. PubMed ID: 38850192.
    Abstract:
    BACKGROUND: Salt-sensitive hypertension is often more prone to induce damage to target organs such as the heart and kidneys. Abundant recent studies have demonstrated a close association between ferroptosis and cardiovascular diseases. Therefore, we hypothesize that ferroptosis may be closely associated with organ damage in salt-sensitive hypertension. This study aimed to investigate whether ferroptosis is involved in the occurrence and development of myocardial fibrosis and renal fibrosis in salt-sensitive hypertensive rats. METHODS: Ten 7-week-old male Dahl salt-sensitive (Dahl-SS) rats were adaptively fed for 1 week, then randomly divided into two groups and fed either a normal diet (0.3% NaCl, normal diet group) or a high-salt diet (8% NaCl, high-salt diet group) for 8 weeks. Blood pressure of the rats was observed, and analysis of the hearts and kidneys of Dahl-SS rats was conducted via hematoxylin-eosin (HE) staining, Masson staining, Prussian blue staining, transmission electron microscopy, tissue iron content detection, malondialdehyde content detection, immunofluorescence, and Western blot. RESULTS: Compared to the normal diet group, rats in the high-salt diet group had increases in systolic blood pressure and diastolic blood pressure (P < 0.05); collagen fiber accumulation was observed in the heart and kidney tissues (P < 0.01), accompanied by alterations in mitochondrial ultrastructure, reduced mitochondrial volume, and increased density of the mitochondrial double membrane. Additionally, there were significant increases in both iron content and malondialdehyde levels (P < 0.05). Immunofluorescence and Western blot results both indicated significant downregulation (P < 0.05) of xCT and GPX4 proteins associated with ferroptosis in the high-salt diet group. CONCLUSIONS: Ferroptosis is involved in the damage and fibrosis of the heart and kidney tissues in salt-sensitive hypertensive rats.
    [Abstract] [Full Text] [Related] [New Search]