These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Whole-cell biocatalysis for ε-poly-l-lysine production by a food-grade recombinant Bacillus subtilis. Author: Li K, Guo Y, Sun X, Xi X, Wang L, Ren X, Wang C, Liu X. Journal: Enzyme Microb Technol; 2024 Sep; 179():110467. PubMed ID: 38852284. Abstract: ε-Poly-l-lysine (ε-PL), a natural food preservative with various advantages, is primarily produced by Streptomyces. It has attracted considerable attentions for the outstanding antibacterial activity, safety, heat stability, water solubility and other remarkable properties. In this study, a food-grade recombinant Bacillus subtilis was constructed for the biocatalysis of ε-PL. Firstly, the d-alanine racemase gene (alrA) was deleted from the genome of Bacillus subtilis 168 to construct an auxotrophic B. subtilis 168 (alrA-). Based on the shuttle plasmid pMA5, a food-grade plasmid pMA5a was constructed by replacing the genes of kanamycin resistance (Kanr) and ampicillin resistance (Ampr) with alrA and the gene encoding α-peptide of β-galactosidase (lacZα), respectively. Subsequently, codon-optimized ε-PL synthase gene (pls) and P-pls were ligated into pMA5a and transformed in E. coli DH5α and expressed in B. subtilis 168 (alrA-). Finally, the whole-cell biocatalysis conditions for ε-PL production by B. subtilis 168 (alrA-)/pMA5a-pls were optimized, and the optimal conditions were 30°C, pH 4, l-lysine concentration of 0.6 g/L, bacterial concentration of 15 % (w/v) and a catalytic time of 7 h. The ε-PL production reached a maximum of 0.33 ± 0.03 g/L. The product was verified to be ε-PL by HPLC and tricine-SDS-PAGE. The information obtained in this study shows critical reference for the food-grade heterologous expression of ε-PL.[Abstract] [Full Text] [Related] [New Search]