These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Three-Dimensional Porous Cu/Cu2+1O Nanosheet Arrays Promote Electrochemical Nitrate-to-Ammonia Conversion. Author: Sun C, Xiao Y, Liu X, Hu J, Zhao Q, Yin Z, Cao S. Journal: Inorg Chem; 2024 Jun 24; 63(25):11852-11859. PubMed ID: 38856980. Abstract: The efficiency of electrochemical nitrate (NO3-) reduction to ammonia (NH3) still remains a challenge due to the sluggish kinetics of the complex eight-electron reduction process and competitive hydrogen evolution reaction (HER). Herein, we designed new three-dimensional (3D) porous Cu/Cu2+1O nanosheet arrays (Cu/Cu2+1O NSA) by coupling a template-directed method with in situ electroreduction. Thanks to the 3D porous structure and in-plane heterojunctions, Cu/Cu2+1O NSA can provide abundant active sites and a good interfacial effect, obtaining the maximum Faradaic efficiency (FE) of ammonia (88.09%) and high yield rate of 0.2634 mmol h-1 cm-2, which is higher than that of CuO nanosheets (77.81% and 0.2188 mmol h-1 cm-2) and CuO nanoparticles (34.60% and 0.0692 mmol h-1 cm-2). Experimental results and DFT simulations show that the interface effect of Cu/Cu2+1O can decrease the reaction energy barrier of the key step (*NO to *NOH) and can greatly inhibit the competitive hydrogen evolution reaction, thereby achieving excellent electrocatalytic performance for nitrate-to-ammonia conversion.[Abstract] [Full Text] [Related] [New Search]