These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Triangular Triazine-Triphenylamine Functionalized Hybrid Fluorescent Porous Polymers for Detection and Photodegradation of Tetracycline Hydrochloride. Author: Guo X, Sun C, Liu H. Journal: Langmuir; 2024 Jun 25; 40(25):13070-13081. PubMed ID: 38860681. Abstract: First, an organic semiconductor fluorescent molecule of 4',4″,4"'-(2,4,6-triphenyl-1,3,5-triazine)-4-(N,N-diphenyl-(1,1'-biphenyl)-4-amine (TPTz) is successfully synthesized by the Suzuki-Miyaura coupling reaction of 2,4,6-tris(4-bromophenyl)-1,3,5-triazine with 4-(diphenylamino)phenylboronic acid. TPTz offers as high as 85% fluorescence quantum yield and a strong solvent effect, with fluorescent colors across the visible spectrum in different solvents. Then, an organic-inorganic hybrid fluorescent porous polymer of PCS-TPTz with a surface area of 714 m2 g-1 and pore volume of 0.660 cm3 g-1 is prepared by the Friedel-Crafts reaction of TPTz and octavinylsilsesquioxane; PCS-TPTz showed a high fluorescence quantum yield of 17% with a large Stokes shift of up to 280 nm. The excellent fluorescence properties and insolubility of PCS-TPTz make it to act as a heterophase sensor for tetracycline hydrochloride (TH) with a KSV of 2.39 × 104 M-1. In addition, PCS-TPTz exhibits an excellent photodegradation activity for antibiotic TH without the requirement for additional oxidants or pH adjustments. ESR spectra and free radical trapping experiment indicate that superoxide radical (•O2-) is the active radical for achieving the photodegradation. The simultaneous detection and degradation of TH are achieved by PCS-TPTz.[Abstract] [Full Text] [Related] [New Search]