These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Membranome-based identification of amino acid substitution in Haemophilus influenzae multidrug efflux pump HmrM for reduced chloramphenicol susceptibility. Author: Ho CH, Chen CW, Su PY. Journal: Arch Microbiol; 2024 Jun 11; 206(7):298. PubMed ID: 38860999. Abstract: A decreased chloramphenicol susceptibility in Haemophilus influenzae is commonly caused by the activity of chloramphenicol acetyltransferases (CATs). However, the involvement of membrane proteins in chloramphenicol susceptibility in H. influenzae remains unclear. In this study, chloramphenicol susceptibility testing, whole-genome sequencing, and analyses of membrane-related genes were performed in 51 H. influenzae isolates. Functional complementation assays and structure-based protein analyses were conducted to assess the effect of proteins with sequence substitutions on the minimum inhibitory concentration (MIC) of chloramphenicol in CAT-negative H. influenzae isolates. Six isolates were resistant to chloramphenicol and positive for type A-2 CATs. Of these isolates, A3256 had a similar level of CAT activity but a higher chloramphenicol MIC relative to the other resistant isolates; it also had 163 specific variations in 58 membrane genes. Regarding the CAT-negative isolates, logistic regression and receiver operator characteristic curve analyses revealed that 48T > G (Asn16Lys), 85 C > T (Leu29Phe), and 88 C > A (Leu30Ile) in HI_0898 (emrA), and 86T > G (Phe29Cys) and 141T > A (Ser47Arg) in HI_1177 (artM) were associated with enhanced chloramphenicol susceptibility, whereas 997G > A (Val333Ile) in HI_1612 (hmrM) was associated with reduced chloramphenicol susceptibility. Furthermore, the chloramphenicol MIC was lower in the CAT-negative isolates with EmrA-Leu29Phe/Leu30Ile or ArtM-Ser47Arg substitution and higher in those with HmrM-Val333Ile substitution, relative to their counterparts. The Val333Ile substitution was associated with enhanced HmrM protein stability and flexibility and increased chloramphenicol MICs in CAT-negative H. influenzae isolates. In conclusion, the substitution in H. influenzae multidrug efflux pump HmrM associated with reduced chloramphenicol susceptibility was characterised.[Abstract] [Full Text] [Related] [New Search]