These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Indium-111 radiolabelling of a brain-penetrant Aβ antibody for SPECT imaging. Author: Gustavsson T, Herth MM, Sehlin D, Syvänen S. Journal: Ups J Med Sci; 2024; 129():. PubMed ID: 38863725. Abstract: BACKGROUND: The development of bispecific antibodies that can traverse the blood-brain barrier has paved the way for brain-directed immunotherapy and when radiolabelled, immunoPET imaging. The objective of this study was to investigate how indium-111 (111In) radiolabelling with compatible chelators affects the brain delivery and peripheral biodistribution of the bispecific antibody RmAb158-scFv8D3, which binds to amyloid-beta (Aβ) and the transferrin receptor (TfR), in Aβ pathology-expressing tg-ArcSwe mice and aged-matched wild-type control mice. METHODS: Bispecific RmAb158-scFv8D3 (biAb) was radiolabelled with 111In using CHX-A"-DTPA, DOTA, or DOTA-tetrazine (DOTA-Tz). Affinity toward TfR and Aβ, as well as stability, was investigated in vitro. Mice were then intravenously administered with the three different radiolabelled biAb variants, and blood samples were collected for monitoring pharmacokinetics. Brain concentration was quantified after 2 and 72 h, and organ-specific retention was measured at 72 h by gamma counting. A subset of mice also underwent whole-body Single-photon emission computed tomography (SPECT) scanning at 72 h after injection. Following post-mortem isolation, the brains of tg-ArcSwe and WT mice were sectioned, and the spatial distribution of biAb was further investigated with autoradiography. RESULTS: All three [111In]biAb variants displayed similar blood pharmacokinetics and brain uptake at 2 h after administration. Radiolabelling did not compromise affinity, and all variants showed good stability, especially the DOTA-Tz variant. Whole-body SPECT scanning indicated high liver, spleen, and bone accumulation of all [111In]biAb variants. Subsequent ex vivo measurement of organ retention confirmed SPECT data, with retention in the spleen, liver, and bone - with very high bone marrow retention. Ex vivo gamma measurement of brain tissue, isolated at 72 h post-injection, and ex vivo autoradiography showed that WT mice, despite the absence of Aβ, exhibited comparable brain concentrations of [111In]biAb as those found in the tg-ArcSwe brain. CONCLUSIONS: The successful 111In-labelling of biAb with retained binding to TfR and Aβ, and retained ability to enter the brain, demonstrated that 111In can be used to generate radioligands for brain imaging. A high degree of [111In]biAb in bone marrow and intracellular accumulation in brain tissue indicated some off-target interactions or potential interaction with intrabrain TfR resulting in a relatively high non-specific background signal.[Abstract] [Full Text] [Related] [New Search]