These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Investigation of mechanical and thermal behavior of fiber-reinforced silica xerogel composites. Author: Ammar M, Wakeel A, Nasir MA, Zubair M. Journal: PLoS One; 2024; 19(6):e0303293. PubMed ID: 38865365. Abstract: Silica aerogels or xerogels are renowned dried gels with low density, high surface area, higher porosity, and better thermal stability which makes it suitable for aerospace, light weight structures, thermal insulation, and hydrophobic coatings. But brittle behaviour, low mechanical strength, and high manufacturing cost restrict its usage. Recently, the addition of various fibres like glass or carbon fiber is one of the best reinforcement methods to minimize the brittle behaviour. Supercritical drying technique usually used to develop aerogel that is expensive and difficult to produce in bulk quantities. Higher cost obstacle can be tackled by applying ambient pressure drying technique to develop xerogel. But researcher observed cracks in samples prepared through the ambient pressure drying technique is still a major shortcoming. The aim of this study is to systematically analyze the influence of silica gel fiber reinforcement on silica xerogels, encompassing morphology, mechanics, thermal behaviour, compression test, and thermogravimetric characteristics. The research used a low-cost precursor named Tetraethyl orthosilicate to synthesize low-cost composite Silica xerogel and glass and carbon fiber added to provide strength and flexibility to the overall composite. Silica gel works as binder in strengthening the xerogel network. The investigation employs scanning electron microscopy (SEM) to examine the morphology of the composites, Fourier Transform Infrared (FTIR) analysis to affirm hydrophobic characteristics, compression tests to assess mechanical strength, and thermogravimetric tests to study weight loss under different conditions. SEM results reveals that glass fibers exhibit lower adhesion to the xerogel network compared to carbon fibers. FTIR analysis confirms the hydrophobicity of the composite silica xerogel. Compression tests showed that, under a 48% strain rate, the carbon fiber composite demonstrates superior compressive stress endurance. Thermogravimetric tests revealed a 1% lower weight loss for the carbon fiber composite compared to the glass fiber composite. This work concludes that glass and carbon fiber together with silica gel particles successfully facilitated in developing flexible, less costly, hydrophobic, and crack-free silica xerogel composites by APD. These advancements have the potential to drive innovations in material science and technology across diverse industries.[Abstract] [Full Text] [Related] [New Search]