These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Bacterial adhesion and surface properties of computer-aided design-computer-aided manufacturing restorative materials.
    Author: Barutçugil Ç, Tayfun D, Çetin Tuncer N, Dündar A.
    Journal: J Oral Sci; 2024 Jul 16; 66(3):157-162. PubMed ID: 38866551.
    Abstract:
    PURPOSE: This study aimed to evaluate the surface properties and bacterial adhesion of computer-aided design-computer-aided manufacturing (CAD-CAM) restorative materials. METHODS: Four CAD-CAM resin-based blocks (Vita Enamic, Shofu block HC, Cerasmart [CS] and Lava Ultimate [LU]) and a leucite-reinforced glass ceramic block (IPS Empress CAD) were used in the present study. Specimens prepared with dimensions of 10 × 10 × 1 mm were polished. Surface characteristics were assessed with hydrophobicity and surface free energy (SFE) analysis. Surface roughness was measured using a profilometer, and elemental and topographic evaluations were performed with SEM-EDX analysis. After being kept in artificial saliva for 1 h, Streptococcus mutans (S. mutans) and Streptococcus mitis (S. mitis) were incubated separately in 5% CO2 atmosphere at 37°C for 24 h. The adhered bacteria were counted as ×108 CFU/mL. RESULTS: Surface roughness, contact angle and SFE measurement values were found to be in the range of 0.144-0.264 Ra, 28.362°-70.074° and 39.65-63.62 mN/m, respectively. The highest adhered amount of S. mutans was found in CS and the lowest in LU, while there was no significant difference between the amounts of adhered S. mitis. CONCLUSION: Despite differences in the surface properties of the materials used for the study, the materials exhibited identical properties with respect to bacterial adhesion.
    [Abstract] [Full Text] [Related] [New Search]