These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Subcomponent self-assembly construction of tetrahedral cage FeII4L4 for high-resolution gas chromatographic separation.
    Author: Luo ZH, Zhu YL, Ran XY, Ma AX, Zhang Y, Zhou HM, Wang BJ, Zhang JH, Xie SM, Yuan LM.
    Journal: Talanta; 2024 Sep 01; 277():126388. PubMed ID: 38870759.
    Abstract:
    Metal organic cages (MOCs), as an emerging discrete supramolecular compounds, have received widespread attention in separation, biomedicine, gas capture, catalysis, and molecular recognition due to their porosity, adjustability and stability. Herein, we present a new chiral MOC FeII4L4 coated capillary column prepared for gas chromatographic (GC) separation of different types of organic compounds, including n-alkanes, n-alcohols, alkylbenzenes, isomers, especially for racemic compounds. There are 20 different kinds of racemates (e.g., alcohols, ethers, epoxides, esters, alkenes, and aldehydes) were well resolved on the FeII4L4 chiral column and a maximum resolution value for 1-phenyl-1-propanol reaches 6.17. The FeII4L4 coated column exhibited high column efficiency (3100 plates m-1 for n-dodecane) and good enantiomeric resolution complementary to that of a commercial β-DEX 120 column and the previously reported chiral MOC [Fe4L6] (ClO4)8 coated column. The relative standard deviation (RSDs) of the peak area and retention time of glycidol and nitrotoluene were below 1.2 %. This study reveals that chiral MOCs have good application prospects in chromatographic separation.
    [Abstract] [Full Text] [Related] [New Search]