These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Graphitic carbon nitride supported silver nanoparticles (AgNPs/g-C3N4): synthesis and photocatalytic behavior in the degradation of 2,4-dichlorophenoxyacetic acid.
    Author: Lan PT, Hao NH, Hieu NT, Ha NTT, Brown CT, Cam LM.
    Journal: RSC Adv; 2024 Jun 12; 14(27):19014-19028. PubMed ID: 38873553.
    Abstract:
    Graphitic carbon nitride supported silver nanoparticles (AgNPs/g-C3N4) with 1%, 3%, and 5% AgNPs were successfully synthesized by an "ex situ" method with ultrasound of a mixture of AgNP solution and g-C3N4. The AgNP solution was prepared by chemical reduction with trisodium citrate, and g-C3N4 was synthesized from the urea precursor. The supported nanoparticles were characterized by X-ray diffraction spectroscopy (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), nitrogen adsorption-desorption (BET), Fourier transformation infrared (FTIR) and Raman spectroscopy, ultraviolet-visible diffuse reflectance spectroscopy (UV-Vis DRS), photoluminescence spectroscopy (PL), electron paramagnetic resonance (EPR) and electrochemical impedance spectroscopy (EIS) Nyquist plots. The visible light-driven photocurrent measurement was performed by three on-off cycles of intermittent irradiation. The analyses show that AgNPs were evenly dispersed on g-C3N4, and have sizes ranging from 40 to 50 nm. The optical properties of the AgNPs/g-C3N4 material were significantly enhanced due to the plasmonic effect of AgNPs. The photocatalytic activity of catalysts was evaluated by 2,4-D degradation under visible light irradiation (λ > 420 nm). In the reaction conditions: pH 2.2; C o (2,4-D) 40 ppm; a m/v ratio of 0.5 g L-1, AgNPs/g-C3N4 materials exhibit superior photocatalytic activity compared to the pristine g-C3N4. The studies on the influence of free radicals and photogenerated holes, h+, show that ˙OH, O2˙-, and h+ play decisive roles in the photocatalytic activity of AgNPs/g-C3N4. The TOC result indicates the minimal toxicity of the by-products formed during the 2,4-D degradation. In addition, the AgNPs/g-C3N4 catalytic activity under direct sunlight irradiation was similar to that under artificial UV irradiation. Based on these results, a possible mechanism is proposed to explain the enhanced photocatalytic activity and stability of AgNPs/g-C3N4. Theoretical calculations on the interaction between 2,4-D and g-C3N4, Ag/g-C3N4 was also performed. The calculated results show that the adsorption of 2,4-D on Ag-modified g-C3N4 is significantly more effective compared to pristine g-C3N4.
    [Abstract] [Full Text] [Related] [New Search]