These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A Data-Driven Approach to Predicting Recreational Activity Participation Using Machine Learning.
    Author: Lee S, Kang M.
    Journal: Res Q Exerc Sport; 2024 Dec; 95(4):873-885. PubMed ID: 38875156.
    Abstract:
    Purpose: With the popularity of recreational activities, the study aimed to develop prediction models for recreational activity participation and explore the key factors affecting participation in recreational activities. Methods: A total of 12,712 participants, excluding individuals under 20, were selected from the National Health and Nutrition Examination Survey (NHANES) from 2011 to 2018. The mean age of the sample was 46.86 years (±16.97), with a gender distribution of 6,721 males and 5,991 females. The variables included demographic, physical-related variables, and lifestyle variables. This study developed 42 prediction models using six machine learning methods, including logistic regression, Support Vector Machine (SVM), decision tree, random forest, eXtreme Gradient Boosting (XGBoost), and Light Gradient Boosting Machine (LightGBM). The relative importance of each variable was evaluated by permutation feature importance. Results: The results illustrated that the LightGBM was the most effective algorithm for predicting recreational activity participation (accuracy: .838, precision: .783, recall: .967, F1-score: .865, AUC: .826). In particular, prediction performance increased when the demographic and lifestyle datasets were used together. Next, as the result of the permutation feature importance based on the top models, education level and moderate-vigorous physical activity (MVPA) were found to be essential variables. Conclusion: These findings demonstrated the potential of a data-driven approach utilizing machine learning in a recreational discipline. Furthermore, this study interpreted the prediction model through feature importance analysis to overcome the limitation of machine learning interpretability.
    [Abstract] [Full Text] [Related] [New Search]