These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Fabricating active Egg Albumin/Sodium Alginate/Sodium Lignosulfonate Nanoparticles film with significantly improved multifunctional characteristics for food packing.
    Author: Lin J, Cui M, Zhang X, Alharbi M, Alshammari A, Lin Y, Yang DP, Lin H.
    Journal: Int J Biol Macromol; 2024 Jul; 273(Pt 2):133110. PubMed ID: 38876230.
    Abstract:
    In food packaging, sodium lignosulfonate nanoparticles (SLS NPs) showed significant antibacterial properties, antioxidant and UV barrier activities. Herein, the SLS NPs were synthesized via a sustainable green method and were added into egg albumin/sodium alginate mixture (EA/SA) to fabricate a safe, edible EA/SA/SNPs food packaging. A composite film EA/SA/SNP was examined microstructurally and physicochemically. The mechanical characteristics, UV protection, water resistance, and the composite film's thermal stability were all enhanced by the inclusion of SLS NPs, and water vapor permeability reduced by 44 %. This composite film exhibited robust antioxidative properties with DPPH and ABTS free radical scavenging rates reaching 76.84 % and 92.56 %, and effective antimicrobial activity against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) with antibacterial rates reaching 98.25 % and 97.13 % for the positively charged nanoparticles interacting with the cell membrane. Freshness tests showed that the EA/SA/SNPs packaging film could delay the quality deterioration of fresh tomatoes. This composite film can slow down spoilage bacteria proliferation and prolongs food's preservation period by eight days at ambient temperature.
    [Abstract] [Full Text] [Related] [New Search]