These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: In vivo tracing of cyromazine and three neonicotinoids in cowpea under field conditions by solid-phase microextraction combined with ultra-performance liquid chromatography-tandem mass spectrometry.
    Author: Zheng T, Zheng M, Li S, Liu C, Li X, Wang M.
    Journal: Anal Chim Acta; 2024 Jul 25; 1314():342796. PubMed ID: 38876515.
    Abstract:
    BACKGROUND: Excessive pesticide residues in agricultural products could accumulate in organisms through the food chain, causing potential harm to human health. The investigation of dissipation kinetics and residues of pesticides in crops is crucial for the scientific application of pesticides and the mitigation of their adverse effects on human health. In vivo solid-phase microextraction (in vivo SPME) has unique advantages, but the research on field plants is still lacking and the quantitative correction methods need to be further developed. RESULTS: A method combining in vivo solid-phase microextraction with ultra-performance liquid chromatography-tandem mass spectrometry (in vivo SPME-UPLC-MS/MS) was developed to monitor the presence of acetamiprid, cyromazine, thiamethoxam and imidacloprid in cowpea fruits grown in the field. The sampling rates (Rs) were determined using both in vitro SPME in homogenized cowpea samples and in vivo SPME in intact cowpea fruit samples. The in vivo-Rs values were significantly higher than the in vitro-Rs for the same analyte, which were used for in vivo SPME correction. The accuracy of this method was confirmed by comparison with a QuEChERS-based approach and subsequently applied to trace pesticide residues in field-grown cowpea fruits. The residual concentrations of each pesticide positively correlated with application doses. After 7 days of application at two different doses, all of the pesticides had residual concentrations below China's maximum residue limits. Both experimental data and predictions indicated that a safe preharvest interval for these pesticides is 7 days; however, if the European Union standards are to be met, a safe preharvest interval for cyromazine should be at least 13 days. SIGNIFICANCE: This study highlights the advantages of in vivo SPME for simultaneous analysis and tracking of multiple pesticides in crops under field conditions. This technique is environmentally friendly, minimally invasive, highly sensitive, accurate, rapid, user-friendly, cost-effective, and capable of providing precise and timely data for long-term pesticide surveillance. Consequently, it furnishes valuable insights to guide the safe utilization of pesticides in agricultural production.
    [Abstract] [Full Text] [Related] [New Search]