These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Electrochemical detection of carbendazim using molecularly imprinted poly(3,4-ethylenedioxythiophene) on Co,N co-doped hollow carbon nanocage@CNTs-modified electrode. Author: Xue S, Zou J, Li J, Xu J, Chen H, Wang L, Gao Y, Duan X, Lu L. Journal: Food Chem; 2024 Oct 30; 456():140063. PubMed ID: 38878547. Abstract: Precisely detecting trace pesticides and their residues in food products is crucial for ensuring food safety. Herein, a high-performance electrochemical sensing platform was developed for the detection of carbendazim (CBZ) using Co,N co-doped hollow carbon nanocage@carbon nanotubes (Co,N-HC@CNTs) obtained from core-shell ZIF-8@ZIF-67 combined with a poly(3,4-ethylenedioxythiophene) (PEDOT) molecularly imprinted polymer (MIP). The Co,N-HC@CNTs exhibited excellent electrocatalytic performance, benefitting from the synergistic effect of CNTs that provide a large specific surface area and excellent electrical conductivity, Co,N co-doped carbon nanocages that offer high electrocatalytic activity and hollow nanocage structures that ensure rapid diffusion kinetics. The conductive PEDOT-MIP provided specific binding sites for CBZ detection and significantly amplified the detection signal. The sensor showed superior selectivity for CBZ with an extremely low detection limit of 1.67 pmol L-1. Moreover, the method was successfully applied to detect CBZ in tomato, orange and apple samples, achieving satisfactory recovery and accuracy, thus demonstrating its practical feasibility.[Abstract] [Full Text] [Related] [New Search]