These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Fabrication of PTFE + TiO2/Ag coatings on 316L/polydopamine with advanced mechanical, bio-corrosion, and antibacterial properties for stainless steel Catheters.
    Author: Sheikhzadeh MS, Ahmadi R, Ghamari N, Afshar A.
    Journal: J Biomater Sci Polym Ed; 2024 Sep; 35(13):2020-2048. PubMed ID: 38879811.
    Abstract:
    This study explores the corrosion resistance and antibacterial properties of a PTFE + TiO2/Ag coating applied to 316 L stainless steel. To enhance adhesion, a polydopamine interlayer was chemically deposited onto the steel surface. The PTFE + TiO2 coating was subsequently applied through immersion, followed by the deposition of silver nanoparticles using a chemical method. Optimization of the polydopamine interlayer involved varying temperature, time, stirring speed, and drying parameters. The optimal conditions for the polydopamine interlayer were determined to be 60 °C for 1 h, 300 rpm stirring, and 24-h drying in a freeze dryer. Analytical results demonstrated that both the PTFE + TiO2 and PTFE/PTFE + TiO2/Ag coatings exhibited exceptional corrosion resistance, with corrosion currents of 3.3 × 10-5 and 3.2 × 10-4 μA/cm2, respectively. Antibacterial assessments showcased the remarkable ability of the PTFE/PTFE + TiO2/Ag coating, containing 5% silver content, to effectively inhibit bacterial penetration within a 6.5 mm radius. Furthermore, this coating displayed a water contact angle of 143°, classifying it as a hydrophobic coating. The photocatalytic efficiency (Rs) was determined to be 3.18 × 10-3 A/W, a performance level comparable to that of a standard UV sensor. These findings underscore the substantial enhancements in corrosion resistance, antibacterial performance, and hydrophobic characteristics achieved with the PTFE + TiO2/Ag coating, particularly through the novel optimization of the polydopamine interlayer. This coating exhibits great promise for multifunctional protective applications in diverse fields, particularly demonstrating its suitability for implants and bio-coatings.
    [Abstract] [Full Text] [Related] [New Search]