These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Synergistic activation of peroxymonosulfate by 3D CoNiO2/Co core-shell structure biochar catalyst for sulfamethoxazole degradation. Author: Liu Z, Shi X, Yan Z, Sun Z. Journal: Bioresour Technol; 2024 Aug; 406():130983. PubMed ID: 38880266. Abstract: In this study, a 3D CoNiO2/Co core-shell structure biochar catalyst derived from walnut shell was synthesized by hydrothermal and ion etching methods. The prepared BC@CoNi-600 catalyst exhibited exceptional peroxymonosulfate (PMS) activation. The system achieved 100 % degradation of sulfamethoxazole (SMX). The reactive oxygen species in the BC@CoNi-600/PMS system included SO4-, OH, and O2-. Density functional theory calculations explored the synergistic effects between nickel-cobalt bimetallic and carbon matrix during PMS activation. The unique 3D core-shell structure of BC@CoNi-600 features an outer nickel-cobalt bimetallic layer with exceptional PMS adsorption capacity, while protecting the zero-valence Co of the inner layer from oxidation. Based on the experimental-data, machine learning modeling mechanism, and information theory, a nonlinear modeling method was proposed. This study utilizes a machine learning approach to investigate the degradation of SMX in complex aquatic environments. This study synthesized a novel biochar-based catalyst for activated PMS and provided unique insights into its environmental applications.[Abstract] [Full Text] [Related] [New Search]