These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Mechanism of action of cysteine proteinases: oxyanion binding site is not essential in the hydrolysis of specific substrates.
    Author: Asbóth B, Stokum E, Khan IU, Polgár L.
    Journal: Biochemistry; 1985 Jan 29; 24(3):606-9. PubMed ID: 3888259.
    Abstract:
    To study the possible stabilization of the oxyanion of the tetrahedral intermediate formed in the course of the catalyses by cysteine proteinases, papain, chymopapain, papaya peptidase A, and ficin, we synthesized N-(benzyloxycarbonyl)phenylalanylthioglycine O-ethyl ester and compared its hydrolysis with that of the corresponding oxygen ester, a highly specific substrate of the above enzymes. It was found that the substitution of sulfur for the carbonyl oxygen hardly affected the second-order rate constant of acylation and diminished catalytic activity by about 1 order of magnitude in deacylation. These results contrast with those obtained with serine proteinases [Asbóth, B., & Polgár, L. (1983) Biochemistry 22, 117-122], where the hydrolysis of thiono esters could not be detected. From the results the following conclusions can be drawn. Stabilization of the tetrahedral intermediate at an oxyanion binding site is not essential with cysteine proteinases. Therefore, and because of the lack of general base catalysis, cysteine proteinases have a less constrained transition-state structure than serine proteinases.
    [Abstract] [Full Text] [Related] [New Search]