These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Proofreading mechanisms of the innate immune receptor RIG-I: distinguishing self and viral RNA.
    Author: Solotchi M, Patel SS.
    Journal: Biochem Soc Trans; 2024 Jun 26; 52(3):1131-1148. PubMed ID: 38884803.
    Abstract:
    The RIG-I-like receptors (RLRs), comprising retinoic acid-inducible gene I (RIG-I), melanoma differentiation-associated gene 5 (MDA5), and laboratory of genetics and physiology 2 (LGP2), are pattern recognition receptors belonging to the DExD/H-box RNA helicase family of proteins. RLRs detect viral RNAs in the cytoplasm and respond by initiating a robust antiviral response that up-regulates interferon and cytokine production. RIG-I and MDA5 complement each other by recognizing different RNA features, and LGP2 regulates their activation. RIG-I's multilayered RNA recognition and proofreading mechanisms ensure accurate viral RNA detection while averting harmful responses to host RNAs. RIG-I's C-terminal domain targets 5'-triphosphate double-stranded RNA (dsRNA) blunt ends, while an intrinsic gating mechanism prevents the helicase domains from non-specifically engaging with host RNAs. The ATPase and RNA translocation activity of RIG-I adds another layer of selectivity by minimizing the lifetime of RIG-I on non-specific RNAs, preventing off-target activation. The versatility of RIG-I's ATPase function also amplifies downstream signaling by enhancing the signaling domain (CARDs) exposure on 5'-triphosphate dsRNA and promoting oligomerization. In this review, we offer an in-depth understanding of the mechanisms RIG-I uses to facilitate viral RNA sensing and regulate downstream activation of the immune system.
    [Abstract] [Full Text] [Related] [New Search]