These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Biochemical and exoenzymatic properties of Aeromonas species.
    Author: Janda JM.
    Journal: Diagn Microbiol Infect Dis; 1985 May; 3(3):223-32. PubMed ID: 3888508.
    Abstract:
    One hundred twenty-seven isolates of Aeromonas comprising the three currently recognizable species (A. hydrophila, A. sobria, and A. caviae) were evaluated for biochemical and exoenzymatic properties. Aeromonas species were generally (greater than 90%) characterized as gram-negative fermentative rods that were oxidase-, catalase-, and beta-galactosidase-positive, produced arginine dihydrolase, and failed to decarboxylate ornithine. More than 95% of all isolates tested failed to grow on 6.5% salt or thiosulfate-citrate bile salts agar and were resistant to the vibriostatic agent 0/129. Most Aeromonas species produced acid from hexoses while failing to ferment alcoholic sugars or trisaccharides. In exoenzymatic studies, Aeromonas species were uniformly found to produce several exoenzymes, including amylase, DNase, RNase, esterase, lipase, gelatinase, protease, fibrinolysin, and chitinase. Within the genus, a number of biochemical and enzymatic properties were found to be associated with one or more of the taxonomically recognizable species. These properties included glycoside utilization, Heiberg grouping based upon fermentation of arabinose, sucrose, and mannose, and the elaboration of several extracellular enzymes (elastase, hemolysin, lecithinase, phosphatase). In addition, phenotypic markers previously associated with enterotoxigenic Aeromonas isolates were almost exclusively found among A. hydrophila and A. sobria species, suggesting that these species are the major enteric pathogens.
    [Abstract] [Full Text] [Related] [New Search]