These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Two-dimensional multiferroic RuClF/AgBiP2S6 van der Waals heterostructures with valley splitting properties and controllable magnetic anisotropy.
    Author: Liu Z, Zhou B, Wang X.
    Journal: Phys Chem Chem Phys; 2024 Jun 26; 26(25):17869-17881. PubMed ID: 38887794.
    Abstract:
    The investigation of new properties in two-dimensional (2D) multiferroic heterostructures is significant. In this work, the electronic properties and magnetic anisotropy energies (MAEs) of 2D multiferroic RuClF/AgBiP2S6 van der Waals (vdW) heterostructures are systematically studied by first principles calculations based on density functional theory (DFT). The Hubbard on-site Coulomb parameter (U) of Ru atoms is necessary to account for the strong correlation among the three-dimensional electrons of Ru. RuClF/AgBiP2S6 heterostructures in different polarizations (RuClF/AgBiP2S6-P↑ and RuClF/AgBiP2S6-P↓) are ferromagnetic semiconductors with stable structures. Valley polarizations are present in the band structures of RuClF/AgBiP2S6 heterostructures with spin-orbit coupling (SOC), the valley splitting energies of which are 279 meV and 263 meV, respectively. The MAEs of RuClF/AgBiP2S6 heterostructures indicate perpendicular magnetic anisotropy (PMA), which are primarily attributed to the differences in matrix elements within Ru (dyz, dz2) orbitals. In addition, valley splittings and MAEs of RuClF/AgBiP2S6 heterostructures are modified at different biaxial strains. Specifically, the highest valley splittings are 283 meV and 287 meV at ε = 2%, while they disappear at ε = -6%. The PMA of RuClF/AgBiP2S6-P↑ is gradually decreased at biaxial strains of -6% to 2%, and MAE is transformed into in-plane magnetic anisotropy (IMA) at ε = 4%. RuClF/AgBiP2S6-P↓ maintains PMA at different strains. The study of non-volatile electrical control of valley splitting phenomena in multiferroic RuClF/AgBiP2S6 heterostructures is crucial in the field of valleytronic devices, which has important theoretical significance.
    [Abstract] [Full Text] [Related] [New Search]