These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Iridium-Catalyzed [2 + 2 + 2] Cycloaddition of Bithiophen-Linked Diynes with Nitriles: Scope and Mechanistic Study with Quantum Chemical Calculation. Author: Sawano T, Urasawa K, Sugiura R, Aoyama K, Sugahara K, Tanaka K, Hosaka H, Kaneko M, Yoshida Y, Ishikawa E, Yoshikawa T, Sakata K, Takeuchi R. Journal: J Org Chem; 2024 Jul 05; 89(13):9473-9487. PubMed ID: 38889001. Abstract: We report a simple and atom-efficient method for the synthesis of bithiophene-fused isoquinolines by iridium-catalyzed [2 + 2 + 2] cycloaddition of bithiophene-linked diynes with nitriles. All three structural isomers of bithiophene-linked diynes underwent [2 + 2 + 2] cycloaddition, and the trend in the reactivity for cycloaddition was diyne 1 = diyne 3 > diyne 2. Dibenzothiophene-linked diyne also reacted with nitriles to form a variety of cycloadducts. Cycloaddition of bithiophene-linked diynes with alkynes and an isocyanate formed naphthodithiophenes and a 2-pyridone derivative, respectively. Cycloadducts bearing a 2-aminopyridine moiety and benzothiophene rings showed intense fluorescence at around 530 nm and gave a fluorescence quantum yield of 0.44. Furthermore, quantum chemical calculations provided insight into the origin of the difference in reactivity of three bithiophene-linked diynes. The different reactivities of the three diynes 1-3 are believed to originate from the step where an iridacyclopentadiene reacts with a coordinated nitrile to form azairidabicyclo[3.2.0]heptatriene. HOMOs of iridacyclopentadiene play a decisive role in this step.[Abstract] [Full Text] [Related] [New Search]