These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Quantitative evaluation of anthropogenic sources and health risks of rare earth elements in airborne particulate matter.
    Author: Guan W, Zhang J, Liu Q.
    Journal: Sci Total Environ; 2024 Oct 01; 945():173960. PubMed ID: 38897472.
    Abstract:
    Rare earth elements (REEs) have emerged as contaminants in airborne particulate matter (PM); however, their anthropogenic sources remain poorly quantified, and associated health risks are unknown. This study investigates the REE distribution across eight sizes of airborne PM during July and December in Qingdao, a major Chinese port city. Our results reveal a single coarse-mode distribution with REE concentrations. In contrast, fine PM (size: 0.43-2.1 μm) exhibits notable enrichment of La and Ce compared to Al and other REEs. This study traces La and Ce enrichment to fluid catalytic cracking catalysts (FCCC)-related sources, including refinery and ship emissions, by comparing the REE fractionation in samples with potential sources. We quantify the contributions from FCCC-related sources to La (July: 33.6 % ± 3.2 %, Dec.: 46.4 % ± 5.2 %) and Ce (July: 16.5 % ± 14.3 %, Dec.: 30.3 % ± 12.2 %) by comparing measured concentrations with predictions derived from neighboring REEs, a method previously used exclusively in aquatic systems. For the first time, supply ratios of refinery and ship to FCCC-related La are calculated using a two-component mixing model based on the [La]FCCC/[V]anth, revealing the dominance of refinery emissions (July: 97.3 % ± 0.6 %, Dec.: 99.6 % ± 0.1 %). Furthermore, a global review of La and Ce anomalies that integrates published REE data with our findings reveals a widespread distribution of positive anomalies. The significantly positive correlation between La and Ce anomalies underscores FCCC-related emissions as a global source in fine PM, contributing 0-92 % (mean: 35 % ± 33 %) for La and 0-72 % (mean: 21 % ± 24 %) for Ce. Although the non-carcinogenic health risks of Ce are generally low globally, concerns should be raised in areas near source emissions, where Ce health risks sharply increased along with its concentrations. There is urgently need to establish a threshold value for La, owing to its global enrichment. This study provides novel insights into the sources and health implications of REEs in airborne PM.
    [Abstract] [Full Text] [Related] [New Search]