These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Gga-miR-200a-3p suppresses avian reovirus-induced apoptosis and viral replication via targeting GRB2. Author: Zhao Y, Zhou L, Zheng H, Gao L, Cao H, Li X, Zheng SJ, Wang Y. Journal: Vet Microbiol; 2024 Aug; 295():110149. PubMed ID: 38909417. Abstract: Avian reovirus (ARV) is a significant pathogen that causes various clinical diseases in chickens, including viral arthritis, chronic respiratory diseases, retarded growth, and malabsorption syndrome. These conditions result in substantial economic losses for the global poultry industry. MicroRNAs (miRNAs), a type of small noncoding RNAs that regulate gene expression post transcriptionally by silencing or degrading their RNA targets, play crucial roles in response to pathogenic infections. In this study, transfection of DF-1 cells with gga-miR-200a-3p, an upregulated miRNA observed in ARV-infected cells, significantly suppressed ARV-induced apoptosis by directly targeting GRB2 and impeded ARV replication. Conversely, knockdown of endogenous gga-miR-200a-3p in DF-1 cells using a specific miRNA inhibitor enhanced ARV-induced apoptosis and promoted GRB2 expression, thereby facilitating viral growth within cells. Consistently, inhibition of GRB2 activity through siRNA-mediated knockdown reduced viral titers. Therefore, gga-miR-200a-3p plays a vital antiviral role in the host response to ARV infection by suppressing apoptosis via direct targeting of GRB2 protein. This information enhances our understanding of the mechanisms by which host cells combat against ARV infection through self-encoded small RNA molecules and expands our knowledge regarding the involvement of microRNAs in the host response to pathogenic infections.[Abstract] [Full Text] [Related] [New Search]