These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Network pharmacology in combination with bibliometrics analysis on the mechanism of compound Kushen injection in the treatment of radiation pneumonia and lung cancer. Author: Lv M, Feng Y, Zeng S, Zhang Y, Shen W, Guan W, E X, Zeng H, Zhao R, Yu J. Journal: Naunyn Schmiedebergs Arch Pharmacol; 2024 Dec; 397(12):9789-9809. PubMed ID: 38918234. Abstract: Radiation pneumonia is a common adverse reaction during radiotherapy in lung cancer patients, which negatively impacts the quality of life and survival of patients. Recent studies have shown that compound Kushen injection (CKI), a traditional Chinese medicine (TCM), has great anti-inflammatory and anticancer potential, but the mechanism is still unclear. We used CiteSpace, the R package "bibliometrix," and VOSviewers to perform a bibliometrics analysis of 162 articles included from the Web of Science core collection. A network pharmacology-based approach was used to screen effective compounds, screen and predict target genes, analyze biological functions and pathways, and construct regulatory networks and protein interaction networks. Molecular docking experiments were used to identify the affinity of key compounds and core target. The literature metrology analysis revealed that over 90% of the CKI-related studies were conducted by Chinese scholars and institutions, with a predominant focus on tumors, while research on radiation pneumonia remained limited. Our investigation identified 60 active ingredients of CKI, 292 genes associated with radiation pneumonia, 533 genes linked to lung cancer, and 37 common targets of CKI in the treatment of both radiation pneumonia and lung cancer. These core potential targets were found to be significantly associated with the OS of lung cancer patients, and the key compounds exhibited a good docking affinity with these targets. Additionally, GO and KEGG enrichment analysis highlighted that the bioinformatics annotation of these common genes mainly involved ubiquitin protein ligase binding, cytokine receptor binding, and the PI3K/Akt signaling pathway. Our study revealed that the main active components of CKI, primarily quercetin, luteolin, and naringin, might act on major core targets, including AKT1, PTGS2, and PPARG, and further regulated key signaling pathways such as the PI3K/Akt pathway, thereby playing a crucial role in the treatment of radiation pneumonia and lung cancer. Moreover, this study had a certain promotional effect on further clinical application and provided a theoretical basis for subsequent experimental research.[Abstract] [Full Text] [Related] [New Search]