These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Development of Iron-Based Single Atom Materials for General and Efficient Synthesis of Amines. Author: Ma Z, Kuloor C, Kreyenschulte C, Bartling S, Malina O, Haumann M, Menezes PW, Zbořil R, Beller M, Jagadeesh RV. Journal: Angew Chem Int Ed Engl; 2024 Sep 09; 63(37):e202407859. PubMed ID: 38923207. Abstract: Earth abundant metal-based heterogeneous catalysts with highly active and at the same time stable isolated metal sites constitute a key factor for the advancement of sustainable and cost-effective chemical synthesis. In particular, the development of more practical, and durable iron-based materials is of central interest for organic synthesis, especially for the preparation of chemical products related to life science applications. Here, we report the preparation of Fe-single atom catalysts (Fe-SACs) entrapped in N-doped mesoporous carbon support with unprecedented potential in the preparation of different kinds of amines, which represent privileged class of organic compounds and find increasing application in daily life. The optimal Fe-SACs allow for the reductive amination of a broad range of aldehydes and ketones with ammonia and amines to produce diverse primary, secondary, and tertiary amines including N-methylated products as well as drugs, agrochemicals, and other biomolecules (amino acid esters and amides) utilizing green hydrogen.[Abstract] [Full Text] [Related] [New Search]