These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Functional diversity in archaeal Hsp60: a molecular mosaic of Group I and Group II chaperonin. Author: Bhakta K, Roy M, Samanta S, Ghosh A. Journal: FEBS J; 2024 Oct; 291(19):4323-4348. PubMed ID: 38923213. Abstract: External stress disrupts the balance of protein homeostasis, necessitating the involvement of heat shock proteins (Hsps) in restoring equilibrium and ensuring cellular survival. The thermoacidophilic crenarchaeon Sulfolobus acidocaldarius, lacks the conventional Hsp100, Hsp90, and Hsp70, relying solely on a single ATP-dependent Group II chaperonin, Hsp60, comprising three distinct subunits (α, β, and γ) to refold unfolded substrates and maintain protein homeostasis. Hsp60 forms three different complexes, namely Hsp60αβγ, Hsp60αβ, and Hsp60β, at temperatures of 60 °C, 75 °C, and 90 °C, respectively. This study delves into the intricacies of Hsp60 complexes in S. acidocaldarius, uncovering their ability to form oligomeric structures in the presence of ATP. The recognition of substrates by Hsp60 involves hydrophobic interactions, and the subsequent refolding process occurs in an ATP-dependent manner through charge-driven interactions. Furthermore, the Hsp60β homo-oligomeric complex can protect the archaeal and eukaryotic membrane from stress-induced damage. Hsp60 demonstrates nested cooperativity in ATP hydrolysis activity, where MWC-type cooperativity is nested within KNF-type cooperativity. Remarkably, during ATP hydrolysis, Hsp60β, and Hsp60αβ complexes exhibit a mosaic behavior, aligning with characteristics observed in both Group I and Group II chaperonins, adding a layer of complexity to their functionality.[Abstract] [Full Text] [Related] [New Search]