These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Comprehensive genomic analysis of adrenocortical carcinoma reveals genetic profiles associated with patient survival. Author: Sun-Zhang A, Juhlin CC, Carling T, Scholl U, Schott M, Larsson C, Bajalica-Lagercrantz S. Journal: ESMO Open; 2024 Jul; 9(7):103617. PubMed ID: 38935991. Abstract: BACKGROUND: Adrenocortical carcinoma (ACC) is one of the most lethal endocrine malignancies and there is a lack of clinically useful markers for prognosis and patient stratification. Therefore our aim was to identify clinical and genetic markers that predict outcome in patients with ACC. METHODS: Clinical and genetic data from a total of 162 patients with ACC were analyzed by combining an independent cohort consisting of tumors from Yale School of Medicine, Karolinska Institutet, and Düsseldorf University (YKD) with two public databases [The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO)]. We used a novel bioinformatical pipeline combining differential expression and messenger RNA (mRNA)- and DNA-dependent survival. Data included reanalysis of previously conducted whole-exome sequencing (WES) for the YKD cohort, WES and RNA data for the TCGA cohort, and RNA data for the GEO cohort. RESULTS: We identified 3903 significant differentially expressed genes when comparing ACC and adrenocortical adenoma, and the mRNA expression levels of 461/3903 genes significantly impacted survival. Subsequent analysis revealed 45 of these genes to be mutated in patients with significantly worse survival. The relationship was significant even after adjusting for stage and age. Protein-protein interaction showed previously unexplored interactions among many of the 45 proteins, including the cancer-related proteins DNA polymerase delta 1 (POLD1), aurora kinase A (AURKA), and kinesin family member 23 (KIF23). Furthermore 14 of the proteins had significant interactions with TP53 which is the most frequently mutated gene in the germline of patients with ACC. CONCLUSIONS: Using a multiparameter approach, we identified 45 genes that significantly influenced survival. Notably, many of these genes have protein interactions not previously implicated in ACC. These findings may lay the foundation for improved prognostication and future targeted therapies.[Abstract] [Full Text] [Related] [New Search]